3.15.72 \(\int (a+b x)^{3/2} (c+d x)^{3/2} \, dx\) [1472]

3.15.72.1 Optimal result
3.15.72.2 Mathematica [A] (verified)
3.15.72.3 Rubi [A] (verified)
3.15.72.4 Maple [A] (verified)
3.15.72.5 Fricas [A] (verification not implemented)
3.15.72.6 Sympy [F]
3.15.72.7 Maxima [F(-2)]
3.15.72.8 Giac [B] (verification not implemented)
3.15.72.9 Mupad [F(-1)]
3.15.72.10 Reduce [B] (verification not implemented)

3.15.72.1 Optimal result

Integrand size = 19, antiderivative size = 189 \[ \int (a+b x)^{3/2} (c+d x)^{3/2} \, dx=-\frac {3 (b c-a d)^3 \sqrt {a+b x} \sqrt {c+d x}}{64 b^2 d^2}+\frac {(b c-a d)^2 (a+b x)^{3/2} \sqrt {c+d x}}{32 b^2 d}+\frac {(b c-a d) (a+b x)^{5/2} \sqrt {c+d x}}{8 b^2}+\frac {(a+b x)^{5/2} (c+d x)^{3/2}}{4 b}+\frac {3 (b c-a d)^4 \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{64 b^{5/2} d^{5/2}} \]

output
1/4*(b*x+a)^(5/2)*(d*x+c)^(3/2)/b+3/64*(-a*d+b*c)^4*arctanh(d^(1/2)*(b*x+a 
)^(1/2)/b^(1/2)/(d*x+c)^(1/2))/b^(5/2)/d^(5/2)+1/32*(-a*d+b*c)^2*(b*x+a)^( 
3/2)*(d*x+c)^(1/2)/b^2/d+1/8*(-a*d+b*c)*(b*x+a)^(5/2)*(d*x+c)^(1/2)/b^2-3/ 
64*(-a*d+b*c)^3*(b*x+a)^(1/2)*(d*x+c)^(1/2)/b^2/d^2
 
3.15.72.2 Mathematica [A] (verified)

Time = 0.30 (sec) , antiderivative size = 167, normalized size of antiderivative = 0.88 \[ \int (a+b x)^{3/2} (c+d x)^{3/2} \, dx=\frac {\sqrt {a+b x} \sqrt {c+d x} \left (-3 a^3 d^3+a^2 b d^2 (11 c+2 d x)+a b^2 d \left (11 c^2+44 c d x+24 d^2 x^2\right )+b^3 \left (-3 c^3+2 c^2 d x+24 c d^2 x^2+16 d^3 x^3\right )\right )}{64 b^2 d^2}+\frac {3 (b c-a d)^4 \text {arctanh}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d} \sqrt {a+b x}}\right )}{64 b^{5/2} d^{5/2}} \]

input
Integrate[(a + b*x)^(3/2)*(c + d*x)^(3/2),x]
 
output
(Sqrt[a + b*x]*Sqrt[c + d*x]*(-3*a^3*d^3 + a^2*b*d^2*(11*c + 2*d*x) + a*b^ 
2*d*(11*c^2 + 44*c*d*x + 24*d^2*x^2) + b^3*(-3*c^3 + 2*c^2*d*x + 24*c*d^2* 
x^2 + 16*d^3*x^3)))/(64*b^2*d^2) + (3*(b*c - a*d)^4*ArcTanh[(Sqrt[b]*Sqrt[ 
c + d*x])/(Sqrt[d]*Sqrt[a + b*x])])/(64*b^(5/2)*d^(5/2))
 
3.15.72.3 Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.04, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {60, 60, 60, 60, 66, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a+b x)^{3/2} (c+d x)^{3/2} \, dx\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {3 (b c-a d) \int (a+b x)^{3/2} \sqrt {c+d x}dx}{8 b}+\frac {(a+b x)^{5/2} (c+d x)^{3/2}}{4 b}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {3 (b c-a d) \left (\frac {(b c-a d) \int \frac {(a+b x)^{3/2}}{\sqrt {c+d x}}dx}{6 b}+\frac {(a+b x)^{5/2} \sqrt {c+d x}}{3 b}\right )}{8 b}+\frac {(a+b x)^{5/2} (c+d x)^{3/2}}{4 b}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {3 (b c-a d) \left (\frac {(b c-a d) \left (\frac {(a+b x)^{3/2} \sqrt {c+d x}}{2 d}-\frac {3 (b c-a d) \int \frac {\sqrt {a+b x}}{\sqrt {c+d x}}dx}{4 d}\right )}{6 b}+\frac {(a+b x)^{5/2} \sqrt {c+d x}}{3 b}\right )}{8 b}+\frac {(a+b x)^{5/2} (c+d x)^{3/2}}{4 b}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {3 (b c-a d) \left (\frac {(b c-a d) \left (\frac {(a+b x)^{3/2} \sqrt {c+d x}}{2 d}-\frac {3 (b c-a d) \left (\frac {\sqrt {a+b x} \sqrt {c+d x}}{d}-\frac {(b c-a d) \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x}}dx}{2 d}\right )}{4 d}\right )}{6 b}+\frac {(a+b x)^{5/2} \sqrt {c+d x}}{3 b}\right )}{8 b}+\frac {(a+b x)^{5/2} (c+d x)^{3/2}}{4 b}\)

\(\Big \downarrow \) 66

\(\displaystyle \frac {3 (b c-a d) \left (\frac {(b c-a d) \left (\frac {(a+b x)^{3/2} \sqrt {c+d x}}{2 d}-\frac {3 (b c-a d) \left (\frac {\sqrt {a+b x} \sqrt {c+d x}}{d}-\frac {(b c-a d) \int \frac {1}{b-\frac {d (a+b x)}{c+d x}}d\frac {\sqrt {a+b x}}{\sqrt {c+d x}}}{d}\right )}{4 d}\right )}{6 b}+\frac {(a+b x)^{5/2} \sqrt {c+d x}}{3 b}\right )}{8 b}+\frac {(a+b x)^{5/2} (c+d x)^{3/2}}{4 b}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {3 (b c-a d) \left (\frac {(b c-a d) \left (\frac {(a+b x)^{3/2} \sqrt {c+d x}}{2 d}-\frac {3 (b c-a d) \left (\frac {\sqrt {a+b x} \sqrt {c+d x}}{d}-\frac {(b c-a d) \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{\sqrt {b} d^{3/2}}\right )}{4 d}\right )}{6 b}+\frac {(a+b x)^{5/2} \sqrt {c+d x}}{3 b}\right )}{8 b}+\frac {(a+b x)^{5/2} (c+d x)^{3/2}}{4 b}\)

input
Int[(a + b*x)^(3/2)*(c + d*x)^(3/2),x]
 
output
((a + b*x)^(5/2)*(c + d*x)^(3/2))/(4*b) + (3*(b*c - a*d)*(((a + b*x)^(5/2) 
*Sqrt[c + d*x])/(3*b) + ((b*c - a*d)*(((a + b*x)^(3/2)*Sqrt[c + d*x])/(2*d 
) - (3*(b*c - a*d)*((Sqrt[a + b*x]*Sqrt[c + d*x])/d - ((b*c - a*d)*ArcTanh 
[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(Sqrt[b]*d^(3/2))))/(4* 
d)))/(6*b)))/(8*b)
 

3.15.72.3.1 Defintions of rubi rules used

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 66
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ 
2   Subst[Int[1/(b - d*x^2), x], x, Sqrt[a + b*x]/Sqrt[c + d*x]], x] /; Fre 
eQ[{a, b, c, d}, x] &&  !GtQ[c - a*(d/b), 0]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 
3.15.72.4 Maple [A] (verified)

Time = 0.26 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.09

method result size
default \(\frac {\left (b x +a \right )^{\frac {3}{2}} \left (d x +c \right )^{\frac {5}{2}}}{4 d}-\frac {3 \left (-a d +b c \right ) \left (\frac {\sqrt {b x +a}\, \left (d x +c \right )^{\frac {5}{2}}}{3 d}-\frac {\left (-a d +b c \right ) \left (\frac {\left (d x +c \right )^{\frac {3}{2}} \sqrt {b x +a}}{2 b}-\frac {3 \left (a d -b c \right ) \left (\frac {\sqrt {b x +a}\, \sqrt {d x +c}}{b}-\frac {\left (a d -b c \right ) \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \ln \left (\frac {\frac {1}{2} a d +\frac {1}{2} b c +b d x}{\sqrt {b d}}+\sqrt {b d \,x^{2}+\left (a d +b c \right ) x +a c}\right )}{2 b \sqrt {d x +c}\, \sqrt {b x +a}\, \sqrt {b d}}\right )}{4 b}\right )}{6 d}\right )}{8 d}\) \(206\)

input
int((b*x+a)^(3/2)*(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/4/d*(b*x+a)^(3/2)*(d*x+c)^(5/2)-3/8*(-a*d+b*c)/d*(1/3/d*(b*x+a)^(1/2)*(d 
*x+c)^(5/2)-1/6*(-a*d+b*c)/d*(1/2*(d*x+c)^(3/2)*(b*x+a)^(1/2)/b-3/4*(a*d-b 
*c)/b*((b*x+a)^(1/2)*(d*x+c)^(1/2)/b-1/2*(a*d-b*c)/b*((b*x+a)*(d*x+c))^(1/ 
2)/(d*x+c)^(1/2)/(b*x+a)^(1/2)*ln((1/2*a*d+1/2*b*c+b*d*x)/(b*d)^(1/2)+(b*d 
*x^2+(a*d+b*c)*x+a*c)^(1/2))/(b*d)^(1/2))))
 
3.15.72.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 534, normalized size of antiderivative = 2.83 \[ \int (a+b x)^{3/2} (c+d x)^{3/2} \, dx=\left [\frac {3 \, {\left (b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}\right )} \sqrt {b d} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \, {\left (2 \, b d x + b c + a d\right )} \sqrt {b d} \sqrt {b x + a} \sqrt {d x + c} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x\right ) + 4 \, {\left (16 \, b^{4} d^{4} x^{3} - 3 \, b^{4} c^{3} d + 11 \, a b^{3} c^{2} d^{2} + 11 \, a^{2} b^{2} c d^{3} - 3 \, a^{3} b d^{4} + 24 \, {\left (b^{4} c d^{3} + a b^{3} d^{4}\right )} x^{2} + 2 \, {\left (b^{4} c^{2} d^{2} + 22 \, a b^{3} c d^{3} + a^{2} b^{2} d^{4}\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{256 \, b^{3} d^{3}}, -\frac {3 \, {\left (b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}\right )} \sqrt {-b d} \arctan \left (\frac {{\left (2 \, b d x + b c + a d\right )} \sqrt {-b d} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left (b^{2} d^{2} x^{2} + a b c d + {\left (b^{2} c d + a b d^{2}\right )} x\right )}}\right ) - 2 \, {\left (16 \, b^{4} d^{4} x^{3} - 3 \, b^{4} c^{3} d + 11 \, a b^{3} c^{2} d^{2} + 11 \, a^{2} b^{2} c d^{3} - 3 \, a^{3} b d^{4} + 24 \, {\left (b^{4} c d^{3} + a b^{3} d^{4}\right )} x^{2} + 2 \, {\left (b^{4} c^{2} d^{2} + 22 \, a b^{3} c d^{3} + a^{2} b^{2} d^{4}\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{128 \, b^{3} d^{3}}\right ] \]

input
integrate((b*x+a)^(3/2)*(d*x+c)^(3/2),x, algorithm="fricas")
 
output
[1/256*(3*(b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a 
^4*d^4)*sqrt(b*d)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2 
*b*d*x + b*c + a*d)*sqrt(b*d)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(b^2*c*d + a 
*b*d^2)*x) + 4*(16*b^4*d^4*x^3 - 3*b^4*c^3*d + 11*a*b^3*c^2*d^2 + 11*a^2*b 
^2*c*d^3 - 3*a^3*b*d^4 + 24*(b^4*c*d^3 + a*b^3*d^4)*x^2 + 2*(b^4*c^2*d^2 + 
 22*a*b^3*c*d^3 + a^2*b^2*d^4)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(b^3*d^3), 
-1/128*(3*(b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a 
^4*d^4)*sqrt(-b*d)*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(-b*d)*sqrt(b*x + 
a)*sqrt(d*x + c)/(b^2*d^2*x^2 + a*b*c*d + (b^2*c*d + a*b*d^2)*x)) - 2*(16* 
b^4*d^4*x^3 - 3*b^4*c^3*d + 11*a*b^3*c^2*d^2 + 11*a^2*b^2*c*d^3 - 3*a^3*b* 
d^4 + 24*(b^4*c*d^3 + a*b^3*d^4)*x^2 + 2*(b^4*c^2*d^2 + 22*a*b^3*c*d^3 + a 
^2*b^2*d^4)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(b^3*d^3)]
 
3.15.72.6 Sympy [F]

\[ \int (a+b x)^{3/2} (c+d x)^{3/2} \, dx=\int \left (a + b x\right )^{\frac {3}{2}} \left (c + d x\right )^{\frac {3}{2}}\, dx \]

input
integrate((b*x+a)**(3/2)*(d*x+c)**(3/2),x)
 
output
Integral((a + b*x)**(3/2)*(c + d*x)**(3/2), x)
 
3.15.72.7 Maxima [F(-2)]

Exception generated. \[ \int (a+b x)^{3/2} (c+d x)^{3/2} \, dx=\text {Exception raised: ValueError} \]

input
integrate((b*x+a)^(3/2)*(d*x+c)^(3/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for m 
ore detail
 
3.15.72.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1071 vs. \(2 (151) = 302\).

Time = 0.45 (sec) , antiderivative size = 1071, normalized size of antiderivative = 5.67 \[ \int (a+b x)^{3/2} (c+d x)^{3/2} \, dx=\text {Too large to display} \]

input
integrate((b*x+a)^(3/2)*(d*x+c)^(3/2),x, algorithm="giac")
 
output
1/192*(8*(sqrt(b^2*c + (b*x + a)*b*d - a*b*d)*sqrt(b*x + a)*(2*(b*x + a)*( 
4*(b*x + a)/b^2 + (b^6*c*d^3 - 13*a*b^5*d^4)/(b^7*d^4)) - 3*(b^7*c^2*d^2 + 
 2*a*b^6*c*d^3 - 11*a^2*b^5*d^4)/(b^7*d^4)) - 3*(b^3*c^3 + a*b^2*c^2*d + 3 
*a^2*b*c*d^2 - 5*a^3*d^3)*log(abs(-sqrt(b*d)*sqrt(b*x + a) + sqrt(b^2*c + 
(b*x + a)*b*d - a*b*d)))/(sqrt(b*d)*b*d^2))*c*abs(b) - 192*((b^2*c - a*b*d 
)*log(abs(-sqrt(b*d)*sqrt(b*x + a) + sqrt(b^2*c + (b*x + a)*b*d - a*b*d))) 
/sqrt(b*d) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d)*sqrt(b*x + a))*a^2*c*abs( 
b)/b^2 + (sqrt(b^2*c + (b*x + a)*b*d - a*b*d)*(2*(b*x + a)*(4*(b*x + a)*(6 
*(b*x + a)/b^3 + (b^12*c*d^5 - 25*a*b^11*d^6)/(b^14*d^6)) - (5*b^13*c^2*d^ 
4 + 14*a*b^12*c*d^5 - 163*a^2*b^11*d^6)/(b^14*d^6)) + 3*(5*b^14*c^3*d^3 + 
9*a*b^13*c^2*d^4 + 15*a^2*b^12*c*d^5 - 93*a^3*b^11*d^6)/(b^14*d^6))*sqrt(b 
*x + a) + 3*(5*b^4*c^4 + 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 + 20*a^3*b*c*d^ 
3 - 35*a^4*d^4)*log(abs(-sqrt(b*d)*sqrt(b*x + a) + sqrt(b^2*c + (b*x + a)* 
b*d - a*b*d)))/(sqrt(b*d)*b^2*d^3))*d*abs(b) + 16*(sqrt(b^2*c + (b*x + a)* 
b*d - a*b*d)*sqrt(b*x + a)*(2*(b*x + a)*(4*(b*x + a)/b^2 + (b^6*c*d^3 - 13 
*a*b^5*d^4)/(b^7*d^4)) - 3*(b^7*c^2*d^2 + 2*a*b^6*c*d^3 - 11*a^2*b^5*d^4)/ 
(b^7*d^4)) - 3*(b^3*c^3 + a*b^2*c^2*d + 3*a^2*b*c*d^2 - 5*a^3*d^3)*log(abs 
(-sqrt(b*d)*sqrt(b*x + a) + sqrt(b^2*c + (b*x + a)*b*d - a*b*d)))/(sqrt(b* 
d)*b*d^2))*a*d*abs(b)/b + 96*(sqrt(b^2*c + (b*x + a)*b*d - a*b*d)*(2*b*x + 
 2*a + (b*c*d - 5*a*d^2)/d^2)*sqrt(b*x + a) + (b^3*c^2 + 2*a*b^2*c*d - ...
 
3.15.72.9 Mupad [F(-1)]

Timed out. \[ \int (a+b x)^{3/2} (c+d x)^{3/2} \, dx=\int {\left (a+b\,x\right )}^{3/2}\,{\left (c+d\,x\right )}^{3/2} \,d x \]

input
int((a + b*x)^(3/2)*(c + d*x)^(3/2),x)
 
output
int((a + b*x)^(3/2)*(c + d*x)^(3/2), x)
 
3.15.72.10 Reduce [B] (verification not implemented)

Time = 0.02 (sec) , antiderivative size = 471, normalized size of antiderivative = 2.49 \[ \int (a+b x)^{3/2} (c+d x)^{3/2} \, dx=\frac {-3 \sqrt {d x +c}\, \sqrt {b x +a}\, a^{3} b \,d^{4}+11 \sqrt {d x +c}\, \sqrt {b x +a}\, a^{2} b^{2} c \,d^{3}+2 \sqrt {d x +c}\, \sqrt {b x +a}\, a^{2} b^{2} d^{4} x +11 \sqrt {d x +c}\, \sqrt {b x +a}\, a \,b^{3} c^{2} d^{2}+44 \sqrt {d x +c}\, \sqrt {b x +a}\, a \,b^{3} c \,d^{3} x +24 \sqrt {d x +c}\, \sqrt {b x +a}\, a \,b^{3} d^{4} x^{2}-3 \sqrt {d x +c}\, \sqrt {b x +a}\, b^{4} c^{3} d +2 \sqrt {d x +c}\, \sqrt {b x +a}\, b^{4} c^{2} d^{2} x +24 \sqrt {d x +c}\, \sqrt {b x +a}\, b^{4} c \,d^{3} x^{2}+16 \sqrt {d x +c}\, \sqrt {b x +a}\, b^{4} d^{4} x^{3}+3 \sqrt {d}\, \sqrt {b}\, \mathrm {log}\left (\frac {\sqrt {d}\, \sqrt {b x +a}+\sqrt {b}\, \sqrt {d x +c}}{\sqrt {a d -b c}}\right ) a^{4} d^{4}-12 \sqrt {d}\, \sqrt {b}\, \mathrm {log}\left (\frac {\sqrt {d}\, \sqrt {b x +a}+\sqrt {b}\, \sqrt {d x +c}}{\sqrt {a d -b c}}\right ) a^{3} b c \,d^{3}+18 \sqrt {d}\, \sqrt {b}\, \mathrm {log}\left (\frac {\sqrt {d}\, \sqrt {b x +a}+\sqrt {b}\, \sqrt {d x +c}}{\sqrt {a d -b c}}\right ) a^{2} b^{2} c^{2} d^{2}-12 \sqrt {d}\, \sqrt {b}\, \mathrm {log}\left (\frac {\sqrt {d}\, \sqrt {b x +a}+\sqrt {b}\, \sqrt {d x +c}}{\sqrt {a d -b c}}\right ) a \,b^{3} c^{3} d +3 \sqrt {d}\, \sqrt {b}\, \mathrm {log}\left (\frac {\sqrt {d}\, \sqrt {b x +a}+\sqrt {b}\, \sqrt {d x +c}}{\sqrt {a d -b c}}\right ) b^{4} c^{4}}{64 b^{3} d^{3}} \]

input
int(sqrt(c + d*x)*sqrt(a + b*x)*(a*c + a*d*x + b*c*x + b*d*x**2),x)
 
output
( - 3*sqrt(c + d*x)*sqrt(a + b*x)*a**3*b*d**4 + 11*sqrt(c + d*x)*sqrt(a + 
b*x)*a**2*b**2*c*d**3 + 2*sqrt(c + d*x)*sqrt(a + b*x)*a**2*b**2*d**4*x + 1 
1*sqrt(c + d*x)*sqrt(a + b*x)*a*b**3*c**2*d**2 + 44*sqrt(c + d*x)*sqrt(a + 
 b*x)*a*b**3*c*d**3*x + 24*sqrt(c + d*x)*sqrt(a + b*x)*a*b**3*d**4*x**2 - 
3*sqrt(c + d*x)*sqrt(a + b*x)*b**4*c**3*d + 2*sqrt(c + d*x)*sqrt(a + b*x)* 
b**4*c**2*d**2*x + 24*sqrt(c + d*x)*sqrt(a + b*x)*b**4*c*d**3*x**2 + 16*sq 
rt(c + d*x)*sqrt(a + b*x)*b**4*d**4*x**3 + 3*sqrt(d)*sqrt(b)*log((sqrt(d)* 
sqrt(a + b*x) + sqrt(b)*sqrt(c + d*x))/sqrt(a*d - b*c))*a**4*d**4 - 12*sqr 
t(d)*sqrt(b)*log((sqrt(d)*sqrt(a + b*x) + sqrt(b)*sqrt(c + d*x))/sqrt(a*d 
- b*c))*a**3*b*c*d**3 + 18*sqrt(d)*sqrt(b)*log((sqrt(d)*sqrt(a + b*x) + sq 
rt(b)*sqrt(c + d*x))/sqrt(a*d - b*c))*a**2*b**2*c**2*d**2 - 12*sqrt(d)*sqr 
t(b)*log((sqrt(d)*sqrt(a + b*x) + sqrt(b)*sqrt(c + d*x))/sqrt(a*d - b*c))* 
a*b**3*c**3*d + 3*sqrt(d)*sqrt(b)*log((sqrt(d)*sqrt(a + b*x) + sqrt(b)*sqr 
t(c + d*x))/sqrt(a*d - b*c))*b**4*c**4)/(64*b**3*d**3)